Spatial function of influence on center optimal location based on Lp-norms

19 julio, 2017 -


Josselin, D.(a)(b), Rojas-Mora, J.(c), Ciligot-Travain, M.(d)


(a)UMR 7300 ESPACE, CNRS, Université d’Avignon et des Pays de Vaucluse, Avignon, France
(b)Laboratoire d’Informatique d’Avignon, Université d’Avignon et des Pays de Vaucluse, Avignon, France
(c)School of Informatics, Universidad Católica de Temuco, Temuco, Chile
(d)Laboratoire de Mathématique d’Avignon, Avignon, France


LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)

Volumen: 10407 LNCS  Páginas: 652-661

DOI: 10.1007/978-3-319-62401-3_47

Fecha de publicación:  19 de julio 2017


Abstract 

We propose a sensitivity analysis using generalized Lp-norm (Minkowski distance) applied on center optimal location (1 facility). The results show that there exists in one dimension an underlying (log)linear relation between influence and distance of the demand points on the center. New Lp-norms are emphasized with interesting properties in statistics (e.g. with p=3) although they are not used in location optimization. The law we enhance is of interest in both statistics and and spatial analysis domains and highlights in a new way the impact of the metrics choice on the center location, through the induced spatial influence function, those metrics aiming at spatial equity (L∞), equality (L2)orefficiency(L1).